A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil.
نویسندگان
چکیده
A low expense process is developed for recovering esterified eicosapentaenoic acid (EPA) from microalgae and fish oil. Over 70% of the EPA content in the esterified crude extract of microalgae were recovered at purities exceeding 90%. The recovery scheme utilizes either wet or freeze-dried algal biomass. The process consists of only three main steps: 1) simultaneous extraction and transesterification of the algal biomass; 2) argentated silica gel column chromatography of the crude extract; and 3) removal of pigments by a second column chromatographic step. Argentated silica gel chromatography recovered about 70% of the EPA ester present in the crude fatty ester mixture of fish oil, but at a reduced purity ( approximately 83% pure) compared to the microalgal derived EPA. The optimal loading of the fatty ester mixture on the chromatographic support was about 3% (w/w) but loadings up to 4% did not affect the resolution significantly. The process was scaled up by a factor of nearly 320 by increasing the diameter of the chromatography columns. The elution velocity remained constant. Compared to the green alga Monodus subterraneus, the diatom Phaeodactylum tricornutum had important advantages as a potential commercial producer of EPA. For a microalgal EPA process to be competitive with fish oil derived EPA, P. tricornutum biomass (2.5% w/w EPA) needs to be obtained at less than $4/kg. If the EPA content in the alga are increased to 3.5%, the biomass may command a somewhat higher price. The quality of microalgal EPA compares favorably with that of the fish oil product. Compared to free fatty acid, EPA ester is more stable in storage. Shelf-life is extended by storing in hexane. The silver contamination in the final purified EPA was negligibly small (<210 ppb).
منابع مشابه
Mid-chain carboxylic acids by catalytic refining of microalgae oil
Microalgae oil serves as a feedstock for a biorefinery approach to mid-chain (di-)carboxylic acid esters, currently only accessible via demanding synthetic routes. Via the butenolysis of monoand poly-unsaturated fatty acids, short-chain unsaturated fatty acid methyl esters and monoand di-enes were produced in a high selectivity. These olefins were further processed into value added linear mid-c...
متن کاملAn Improved Enzymatic Indirect Method for Simultaneous Determinations of 3-MCPD Esters and Glycidyl Esters in Fish Oils.
The enzymatic indirect method for simultaneous determinations of 3-chloro-1, 2-propanediol fatty acid esters (3-MCPD-Es) and glycidyl fatty acid esters (Gly-Es) make use of lipase from Candida cylindracea (previously referred to as C. rugosa). Because of low substrate specificity of the lipase for esters of polyunsaturated fatty acids (PUFA), such as docosahexaenoic acid (DHA) and eicosapentaen...
متن کاملThe effect of fish-oil derived eicosapentaenoic acid on cell proliferation and caspase-3 activity in human colorectal cancer cell line
Background: Using natural compounds with low toxicity on normal cells and high efficacy on malignant cells is highly appreciated for treatment of colorectal cancer (CRC). In the present study, the effect of fish-oil derived eicosapentaenoic acid (EPA) on the cell number, cell proliferation rate and caspase-3 enzyme activity in LS174T human colorectal cancer cell line was investigated. Methods:...
متن کاملOmega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA.
Long-chain EPA/DHA omega-3 fatty acid supplementation can be co-preventative and co-therapeutic. Current research suggests increasing accumulated long chain omega-3s for health benefits and as natural medicine in several major diseases. But many believe plant omega-3 sources are nutritionally and therapeutically equivalent to the EPA/DHA omega-3 in fish oil. Although healthy, precursor ALA bio-...
متن کاملIntegrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast Yarrowia lipolytica for Biodiesel Production: A Review
As one of the major biofuels to replace fossil fuel, biodiesel has now attracted more and more attention due to its advantages in higher energy density and overall less greenhouse gas generation. Biodiesel (fatty acid alkyl esters) is produced by chemically or enzymatically catalyzed transesterification of lipids from microbial cells, microalgae, oil crops, or animal fats. Currently, plant oils...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Enzyme and microbial technology
دوره 26 7 شماره
صفحات -
تاریخ انتشار 2000